B I E N V E N I D O S AL SITIO DONDE ENCONTRARAS TEMAS DE INFORMATICA

PROTOCOLO PPP

0 Comments »
Point-to-Point Protocol

Point-to-point Protocol, es decir, Protocolo punto a punto, es un protocolo de nivel de enlace estandarizado en el documento RFC 1661. Por tanto, se trata de un protocolo asociado a la pila TCP/IP de uso en Internet. Más conocido por su acrónimo: PPP.

Descripción

El protocolo PPP permite establecer una comunicación a nivel de enlace entre dos computadoras. Generalmente, se utiliza para establecer la conexión a Internet de un particular con su proveedor de acceso a través de un módem telefónico. Ocasionalmente también es utilizado sobre conexiones de banda ancha (como PPPoE o PPPoA). Además del simple transporte de datos, PPP facilita dos funciones importantes:

• Autenticación. Generalmente mediante una clave de acceso.
• Asignación dinámica de IP. Los proveedores de acceso cuentan con un número limitado de direcciones IP y cuentan con más clientes que direcciones. Naturalmente, no todos los clientes se conectan al mismo tiempo. Así, es posible asignar una dirección IP a cada cliente en el momento en que se conectan al proveedor. La dirección IP se conserva hasta que termina la conexión por PPP. Posteriormente, puede ser asignada a otro cliente.
PPP también tiene otros usos, por ejemplo, se utiliza para establecer la comunicación entre un módem ADSL y la pasarela ATM del operador de telecomunicaciones. También se ha venido utilizando para conectar a trabajadores desplazados (p. ej. ordenador portátil) con sus oficinas a través de un centro de acceso remoto de su empresa. Aunque está aplicación se está abandonando en favor de las redes privadas virtuales, más seguras.

Trama PPP

Una trama PPP esta basada en HDLC. Tiene un mínimo de 6 bytes y un máximo indeterminado.

La dirección siempre es 0xFF que es la dirección de difusión estandar de todos los destinos. En PPP no hay direcciones individuales de cada estación dado que sólo hay dos. El campo control vale 0x03, que corresponde con tramas de usuario no númeradas en HDLC. Estos dos campos se pueden eliminar si se negocia en LCP "Address-and-Control-Field-Compression" (ACFC, compresión de los campos de dirección y control).

Los identificadores de protocolo están especificados en el RFC 1661. Los más importantes son:
• 0x0021 para IP.
• 0xc021 para LCP.
• 0xc023 para PAP.
• 0xc223 para CHAP.

El campo FCS (Frame Check Sequence) es una secuencia de comprobación de trama. Se utiliza para detectar errores en la transmisión de la trama. El transmisor calcula el CRC del contenido de la trama y lo coloca en el campo FCS. El receptor calcula el CRC de la trama que recibe y lo compara con el valor que hay en el FCS. Si los valores son distintos, hay bits erróneos en la trama, por lo que se descarta. Si el campo FCS es de 2 bytes se usa un CRC de 16 bits. Si el campo FCS es de 4 bytes, se usa un CRC de 32 bits.

Funcionamiento


Protocolo PPP.

PPP consta de las siguientes fases:

1. Establecimiento de conexión. Durante esta fase, una computadora contacta con la otra y negocian los parámetros relativos al enlace usando el protocolo LCP. Este protocolo es una parte fundamental de PPP y por ello están definidos en el mismo RFC. Usando LCP se negocia el método de autenticación que se va a utilizar, el tamaño de los datagramas, números mágicos para usar durante la autenticación,...

2. Autenticación. No es obligatorio. Existen dos protocolos de autenticación. El más básico e inseguro es PAP, aunque no se recomienda dado que manda el nombre de usuario y la contraseña en claro. Un método más avanzado y preferido por muchos ISPs es CHAP, en el cual la contraseña se manda cifrada.

3. Configuración de red. En esta fase se negocian parámetros dependientes del protocolo de red que se esté usando. PPP puede llevar muchos protocolos de red al mismo tiempo y es necesario configurar individualmente cada uno de estos protocolos. Para configurar un protocolo de red se usa el protocolo NCP correspondiente. Por ejemplo, si la red es IP, se usa el protocolo IPCP para asignar la dirección IP del cliente y sus servidores DNS.

4. Transmisión. Durante esta fase se manda y recibe la información de red. LCP se encarga de comprobar que la línea está activa durante periodos de inactividad. Obsérvese que PPP no proporciona cifrado de datos.

5. Terminación. La conexión puede ser finalizada en cualquier momento y por cualquier
motivo.

PPP tiene todas las propiedades de un protocolo de nivel de enlace:

• Garantía de recepción.
• Recepción ordenada
• Uso del puerto 53 para conexión bidireccional de sockets.

Bibliografia

Obtenido de:
http://es.wikipedia.org/wiki/Point-to-Point_Protocol

MODELO OSI

0 Comments »
Modelo OSI

El modelo de referencia de Interconexión de Sistemas Abiertos (OSI, Open System Interconnection) fue el modelo de red descriptivo creado por la Organización Internacional para la Estandarización lanzado en 1984. Es decir, fue un marco de referencia para la definición de arquitecturas de interconexión de sistemas de comunicaciones.


Pila del modelo OSI.

Modelo de referencia OSI

Siguiendo el esquema de este modelo se crearon numerosos protocolos. El advenimiento de protocolos más flexibles donde las capas no están tan demarcadas y la correspondencia con los niveles no era tan clara puso a este esquema en un segundo plano. Sin embargo es muy usado en la enseñanza como una manera de mostrar como puede estructurarse una "pila" de protocolos de comunicaciones.

El modelo especifica el protocolo que debe ser usado en cada capa, y suele hablarse de modelo de referencia ya que es usado como una gran herramienta para la enseñanza de comunicación de redes. Este modelo está dividido en siete capas:

Capa física (Capa 1)

Es la que se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico como a la forma en la que se transmite la información.

Sus principales funciones se pueden resumir como:
• Definir el medio o medios físicos por los que va a viajar la comunicación: cable de pares trenzados (o no, como en RS232/EIA232), coaxial, guías de onda, aire, fibra óptica.
• Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) que se van a usar en la transmisión de los datos por los medios físicos.
• Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico).
• Transmitir el flujo de bits a través del medio.
• Manejar las señales eléctricas/electromagnéticas
• Especificar cables, conectores y componentes de interfaz con el medio de transmisión, polos en un enchufe, etc.
• Garantizar la conexión (aunque no la fiabilidad de ésta).

Capa de enlace de datos (Capa 2)

Esta capa se ocupa del direccionamiento físico, de la topología de la red, del acceso a la red, de la notificación de errores, de la distribución ordenada de tramas y del control del flujo.

Se hace un direccionamiento de los datos en la red ya sea en la distribución adecuada desde un emisor a un receptor, la notificación de errores, de la topología de la red de cualquier tipo.

Capa de red (Capa 3)

El objetivo de la capa de red es hacer que los datos lleguen desde el origen al destino, aún cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan encaminadores, aunque es más frecuente encontrar el nombre inglés routers y, en ocasiones enrutadores.

Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewalls actúan sobre esta capa principalmente, para descartar direcciones de máquinas.

En este nivel se realiza el direccionamiento lógico y la determinación de la ruta de los datos hasta su receptor final.

Capa de transporte (Capa 4)

Capa encargada de efectuar el transporte de los datos (que se encuentran dentro del paquete) de la máquina origen a la de destino, independizándolo del tipo de red física que se esté utilizando. La PDU de la capa 4 se llama Segmento. Sus protocolos son TCP y UDP; el primero orientado a conexión y el otro sin conexión.

Capa de sesión (Capa 5)

Esta capa es la que se encarga de mantener y controlar el enlace establecido entre los dos computadores que están transmitiendo datos de cualquier índole.
Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles.

Capa de presentación (Capa 6)

El objetivo es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres los datos lleguen de manera reconocible.

Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.
Esta capa también permite cifrar los datos y comprimirlos. En pocas palabras es un traductor.

Capa de aplicación (Capa 7)

Ofrece a las aplicaciones la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (POP y SMTP), gestores de bases de datos y servidor de ficheros (FTP). Hay tantos protocolos como aplicaciones distintas y puesto que continuamente se desarrollan nuevas aplicaciones el número de protocolos crece sin parar.

Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente.

Unidades de datos

El intercambio de información entre dos capas OSI consiste en que cada capa en el sistema fuente le agrega información de control a los datos, y cada capa en el sistema de destino analiza y remueve la información de control de los datos como sigue:

Si un ordenador (host A) desea enviar datos a otro (host B), en primer término los datos deben empaquetarse a través de un proceso denominado encapsulamiento, es decir, a medida que los datos se desplazan a través de las capas del modelo OSI, reciben encabezados, información final y otros tipos de información.



N-PDU (Unidad de datos de protocolo)

Es la información intercambiada entre entidades pares, es decir, dos entidades pertenecientes a la misma capa pero en dos sistemas diferentes, utilizando una conexión (N-1).

Está compuesta por:

N-SDU (Unidad de datos del servicio)
Son los datos que se necesitan la entidades (N) para realizar funciones del servicio pedido por la entidad (N+1).

N-PCI (Información de control del protocolo)
Información intercambiada entre entidades (N) utilizando una conexión (N-1) para coordinar su operación conjunta.

N-IDU (Unidad de datos de interface)
Es la información transferida entre dos niveles adyacentes, es decir, dos capas contiguas.
Está compuesta por:

N-ICI (Información de control del interface)
Información intercambiada entre una entidad (N+1) y una entidad (N) para coordinar su operación conjunta.

Datos de Interface-(N)

Información transferida entre una entidad-(N+1) y una entidad-(N) y que normalmente coincide con la (N+1)-PDU.

Transmisión de los datos



Transferencia de información en el modelo OSI.


Bibliografia

Obtenido de:
http://es.wikipedia.org/wiki/Modelo_OSI
17:57

CLASIFICACION DE LAS REDES

0 Comments »
Clasificación de redes

Por alcance:

Red de área personal (PAN)
Red de área local (LAN)
Red de área de campus (CAN)
Red de área metropolitana (MAN)
Red de área amplia (WAN)
Red de área simple (SPL)
Red de área de almacenamiento (SAN)

Por método de la conexión:

Medios guiados: cable coaxial, cable de par trenzado, fibra óptica y otros tipos de cables.
Medios no guiados: radio, infrarrojos, microondas, láser y otras redes inalámbricas.

Por relación funcional:

Cliente-servidor
Igual-a-Igual (p2p)



Arquitecturas de red.

Por Topología de red:
Red en bus
Red en estrella
Red en anillo (o doble anillo)
Red en malla (o totalmente conexa)
Red en árbol
Red mixta (cualquier combinación de las anteriores)

Por la direccionalidad de los datos (tipos de transmisión)

Simplex (unidireccionales): un Equipo Terminal de Datos transmite y otro recibe. (p. ej. streaming)
Half-Duplex (bidireccionales): sólo un equipo transmite a la vez. También se llama Semi-Duplex (p. ej. una comunicación por equipos de radio, si los equipos no son full dúplex, uno no podría transmitir (hablar) si la otra persona está también transmitiendo (hablando) porque su equipo estaría recibiendo (escuchando) en ese momento).
o Full-Duplex (bidireccionales): ambos pueden transmitir y recibir a la vez una misma información. (p. ej. videoconferencia).

Clasificación de las redes de ordenadores

Por capa de red

clasificar según la capa de red en la cual funcionan según algunos modelos de la referencia básica que se consideren ser estándares en la industria tal como el modelo OSI de siete capas y el modelo del TCP/IP de cinco capas.

Por la escala

Las redes de ordenadores se pueden clasificar según la escala o el grado del alcance de la red, por ejemplo como red personal del área (PAN), la red de área local (LAN), red del área del campus (CAN), red de área metropolitana (MAN), o la red de área amplia (WAN).

Por método de la conexión

Las redes de ordenadores se pueden clasificar según la tecnología que se utiliza para conectar los dispositivos individuales en la red tal como HomePNA, línea comunicación, Ethernet, o LAN sin hilos de energía.

Por la relación funcional

Las redes de computadores se pueden clasificar según las relaciones funcionales que existen entre los elementos de la red, servidor activo por ejemplo del establecimiento de una red, de cliente y arquitecturas del Par-a-par (workgroup). También, las redes de ordenadores son utilizadas para enviar datos a partir del uno a otro por el hardrive.

Por topología de la red

Define como están conectadas computadoras, impresoras, dispositivos de red y otros dispositivos. En otras palabras, una topología de red describe la disposición de los cables y los dispositivos, así como las rutas utilizadas para las transmisiones de datos. La topología influye enormemente en el funcionamiento de la red.

Las topologías son las siguientes: bus, anillo o doble anillo, estrella, estrella extendida, jerárquica y malla.

Por los servicios proporcionados

Las redes de ordenadores se pueden clasificar según los servicios que proporcionan, por ejemplo redes del almacén, granjas del servidor, redes del control de proceso, red de valor añadido, red sin hilos de la comunidad, etc.

Por protocolo

Las redes de ordenadores se pueden clasificar según el protocolo de comunicaciones que se está utilizando en la red. Ver los artículos sobre la lista de los apilados del protocolo de red y la lista de los protocolos de red.

Bibliografía

Groth, David; Toby Skandier (2005). “Guía del estudio de redes, cuarta edición”. Sybex, Inc. ISBN 0-7821-4406-3.

Obtenido de:
http://es.wikipedia.org/wiki/Red_de_computadoras

HARDWARE DE REDES

0 Comments »
Hardware para redes

En general tenemos gran variedad de hardware usado en comunicaciones, enrutadores, commutadores, repetidores, concentradores, puentes, servidores, terminales, multiplexores, conectores, cables, entre muchos otros mas. En esta sección voy a explicarles que función tiene cada uno de ellos.

ROUTER o ENCAMINADOR: Es un dispositivo que conecta dos redes locales y es el responsable de controlar el tráfico entre ellas y de clasificarlo. En sistemas complejos suele ser un filtro de seguridad para prevenir daños en la red local. Es posible conectar varias redes locales de forma que los ordenadores o nodos de cada una de ellas tenga acceso a todos los demás.

Estos dispositivos operan en el tercer nivel de red ( Capa de Red ) del modelo OSI, y enlazan los tres primeros niveles de este modelo. Los routers redirigen paquetes de acuerdo al método entregado por los niveles mas altos. Actualmente, son capaces de manejar un protocolo o varios protocolos a la vez.

Son también llamados sistemas intermediarios. Originalmente, fueron usados para interconectar múltiples redes corriendo el mismo protocolo de alto nivel ( por ejemplo; TCP/IP) con múltiples caminos de transmisión origen/destino. Entre los más usados en la actualidad se encuentran los de la empresa CISCO.

CONSIDERACIONES DE RUTEO:

Ruteo Estático: Ocurre cuando uno requiere predefinir todas las rutas a las redes destinos.

Ruteo Dinámico: Ocurre cuando la información de ruteo es intercambiada periódicamente entre los routers. permite rutear información basada en el conocimiento actual de la topología de la red.

Sobrecarga: Al intercambiar la información de ruteo entre router y actualizar las tablas de rutas internas, requiere una cierta cantidad de recursos adicionales. Estos recursos no son directamente involucrados en mover directamente información útil del usuario, esto pasa a ser un requerimiento adicional y son por lo tanto considerados como sobrecargas. esta puede influir sobre trafico de red, memoria y CPU

ALGORITMO DE RUTEO:

Existen dos categorías de ruteo:
1. Algoritmo de Vector de Distancia ( RIP )
2. Algoritmo de Estado del Enlace ( OSPF )

Cada uno tiene sus propias ventajas y desventajas. en muchos casos el usuario no tomará la decisión de cual escoger, ya que normalmente el protocolo de ruteo seleccionado asocia directamente el uso de estos algoritmos.

VENTAJAS Y DESVENTAJAS DEL USO DE ROUTERS:

Los routers son configurables. Esto permite al administrador tomar decisiones de ruteo (rutas estáticas en caso de fallas) , así como hacer sincronización del desempeño de la interred.

Son relativamente fáciles de mantener una vez configurados, ya que muchos protocolos pueden actualizar sus tablas de ruta de una manera dinámica.

Los routers proveen características entre intereses, esto previene incidentes que pudieran ocurrir en una sub red, afectando a otras sub redes. Así como también previene la presencia de intrusos.

Los routers no son afectados por los contrastes de los tiempos de retardos como ocurre en los bridges. Esto significa que los routers no están limitados topológicamente.

Los routers son inteligentes y pueden seleccionar el camino más aconsejable entre dos o más conexiones simultaneas. Esto además permite hacer balances de la carga lo cual alivia las congestiones. Dentro de las desventajas se pueden mencionar que requieren una cantidad significativa de tiempo para instalarlos y configurarlos dependiendo de la topología de la red y de los protocolos usados. Los routers son dependientes del protocolo, cada protocolo a rutear debe ser conocido por el router. Tienen un mayor costo que los Bridges y son más complejos.

CONFIGURANDO UN ROUTER PARA EL TRAFICO DE RED:

El router trabaja en dos ambientes:
1. Un ambiente enable o de privilegios, en el cual se puede cambiar la configuración. Generalmente para ingresar al modo enable se requiere de un password.
2. Un ambiente de consulta o terminal virtual donde se accesa sólo a los comandos de consulta.

Para iniciar la configuración de un router, debemos encender el equipo que no tiene configuración, y entrar a un ambiente setup, el cual muestra un dialogo interactivo con el usuario para configurar los parámetros básicos y de configuración de interfaces de red.

1.- VERIFICACION DE LA CONEXION:
Dependiendo del ambiente de trabajo (consulta o enable) es la lista de comandos que se despliega. De todos esos comandos, es necesario ver algunos de interés.

2.- COMANDO SHOW:
Permite consultar por una serie de estados y configuraciones del router. Para saber cuales son los parametros que tiene el comando show, bastara con teclear:
show?

Algunas opciones del comando show, son las siguientes:
• show config : permite ver el archivo de configuración, sin entrar a editarlo.
• show ip route : Permite ver las rutas estáticas definidas y las dinámicas que el router ha aprendido. Las rutas estáticas se diferencian por la letra "s" al comienzo de la línea donde se despliega.
• show ip protocolo: permite ver los protocolos usados.
• show interface: permite ver el estado de las interfaces.

BRIGDE O PUENTE: Unidad Funcional que interconecta dos redes de área local que utilizan el mismo protocolo de control de enlace lógico pero distintos protocolos de control de acceso al medio. Operan en el nivel 2 de OSI ( Capa de Enlace de Datos). Estos equipos unen dos redes actuando sobre los protocolos de bajo nivel. Solo el tráfico de una red que va dirigido a la otra atraviesa el dispositivo. Esto permite a los administradores dividir las redes en segmentos lógicos, descargando de tráfico las interconexiones. Los bridges producen las señales, con lo cual no se transmite ruido a través de ellos.

BROUTER: Este es un dispositivo que realiza las funciones de un brigde y un router a la vez.

HUB O CONCENTRADOR: En un equipo integrador para diversos tipos de cables y de arquitectura que permite estructurar el cableado de las redes. La variedad de tipos y características de estos equipos es muy grande. En un principio eran solo concentradores de cableado, pero cada vez disponen de mayor número de capacidad de la red, gestión remota, etc.
La tendencia es a incorporar más funciones en el concentrador. Existen concentradores para todo tipo de medios físicos. Generalmente te indican la actividad de la red, velocidad y puertos involucrados. Su funcionamiento es simple, se lleva hasta el un cable con la señal a transmitir y desde el se ramifican mas señales hacia otros nodos o puertos. Entre los fabricantes que producen gran variedad de estos equipos se encuentran las empresas 3COM y Cisco

REPETIDOR: Es un equipo que actúa a nivel físico. Prolonga la longitud de la red uniendo dos segmentos, amplificando, regenerando y sincronizando la señal. La red sigue siendo una sola, con lo cual, siguen siendo válidas las limitaciones en cuanto al número de estaciones que pueden compartir el medio. Una desventaja de estos equipos es que también amplifican el ruido que pueda venir con la señal.

GATEWAY: Es un equipo para interconectar redes con protocolos y arquitecturas completamente diferentes, a todos los niveles de comunicación. La traducción de las unidades de información reduce mucho la velocidad de transmisión a través de estos equipos. En realidad es una puerta de acceso, teniendo lugar una conversión completa de protocolos hasta la capa 7 ( Capa de Aplicación) del modelo de referencia OSI.

MODEM: Es un dispositivo que permiten a las computadoras comunicarse entre sí a través de líneas telefónicas, esta comunicación se realiza a través de la modulación y demodulación de señales electrónicas que pueden ser procesadas por computadoras, las señales analógicas se convierten en digitales y viceversa. Los modems pueden ser externos o internos dependiendo de su ubicación física en la red. Entre los mayores fabricantes tenemos a 3COM, AT&T, Motorola, US Robotics y NEC.

La transmisión por modem se divide en tres tipos:

SIMPLEX: Permite enviar información solo en un sentido.

HALF DUPLEX: Permite enviar información en ambos sentidos pero no a la misma vez.

FULL DUPLEX: Permite enviar información en ambos sentidos simultaneamente.
NIC / MAU: Son tarjetas de interface de red (Network Interface Card o NIC) o también se le denominan unidades de acceso al medio (Medium Access Unit o MAC). Cada computadora necesita el “hardware” para transmitir y recibir información. Es el dispositivo que conecta la computadora u otro equipo de red con el medio físico. La NIC es un tipo de tarjeta de expansión de la computadora y proporciona un puerto en la parte trasera de ella al cual se conecta el cable de la red. Hoy en día cada vez son más los equipos que disponen de interfaz de red, principalmente Ethernet, incorporadas. A veces, es necesario, además de la tarjeta de red, un
TRANCEPTOR. Este es un dispositivo que se conecta al medio físico y a la tarjeta, bien porque no sea posible la conexión directa (10base 5) o porque el medio sea distinto del que utiliza la tarjeta. también se le denomina MAC al protocolo empleado para la propagación de las señales eléctricas. Define el subnivel inferior de la capa 2 del modelo OSI (Capa de Enlace).

SERVIDORES: Son equipos que permiten la conexión a la red de equipos periféricos tanto para la entrada como para la salida de datos. Estos dispositivos se ofrecen en la red como recursos compartidos. Así un terminal conectado a uno de estos dispositivos puede establecer sesiones contra varios ordenadores multiusuarios disponibles en la red. La administración de la red se realiza a través de estos equipos tanto para archivos, impresión y aplicaciones entre otros. Entre las empresas pioneras en la fabricación de potentes servidores tenemos a la IBM, Hewlett Packard y Compaq.

CABLES Y CONECTORES: A estos elementos le dedicamos una sección individual y mas completa la cual puedes encontrar en la página principal.

MULTIPLEXOR (MPX): Es también conocido como Concentrador (de líneas). Es un dispositivo que acepta varias líneas de datos a la entrada y las convierte en una sola línea corriente de datos compuesta y de alta velocidad. Esto hace la función de transmitir "simultáneamente" sobre un mismo medio varias señales.

MULTIPLEXOR (MUX): Es un equipo cuya función es la de seleccionar entre varias entradas una de ellas a la salida. Generalmente el Multiplexor esta unido a otros equipos como un modem o también un switch. Los multiplexores son circuitos realmente importantes en el diseño de sistemas que requieran un cierto tráfico y comunicación entre distintos componentes y se necesite controlar en todo momento que componente es quien envía los datos. En realidad se puede asimilar a un selector, ya que por medio de unas entradas de control se selecciona la entrada que se desee reflejada en la salida.

Esto se consigue utilizando principalmente puertas XOR, de ahi su nombre multiple_xor. Entre algunos fabricantes de multiplexores tenemos a General DataComm, Rad, Pan Datel, Ascom, Timeplex y Siliconix.

En el mercado se encuentran todo tipo de modelos con diversidad de anchos de entradas (por ejemplo MUXs de 2 entradas de buses de 8 bits y 1 salida de 8 bits, con lo que se estaría conmutando entre 2 buses de 2 dispositivos de 8 bits). Además de lo anterior, suele ser un hábito que exista también una entrada de Enable (habilitación general de integrado). Existen varios tipos de multiplexores:

MULTIPLEXOR DE DIVISION DE TIEMPO: Multiplexor que asigna determinado tiempo a una entrada para enviar el tráfico hasta la salida. Siempre se asignara ese lapso de tiempo aunque no exista tráfico. La multiplexación bajo este modelo se le conoce como TDM (Time Division Multiplexing).

MULTIPLEXOR ESTADISTICO: Multiplexor de división de tiempo, que asigna en forma "estadística", la rebanada de tiempo al siguiente dispositivo conectado, es decir, el determina cual de las entradas se requiere en la salida y se basa en al tráfico generado por dichas entradas. Si una entrada no genera tráfico le da la oportunidad a otra que si lo genere. La multiplexación bajo este modelo se le conoce como SDM (Statistical Division Multiplexing).

MULTIPLEXOR DE FRECUENCIAS: Multiplexor que permite que varias entradas simultáneas puedan transmitir datos a una única salida pero en diferentes frecuencias. Se define un ancho de banda para tal fin, el cual se reparte entre las entradas existentes en un mismo lapso de tiempo. La multiplexación bajo este modelo se le conoce como FDM (Frecuency Division Multiplexing).

MULTIPLEXOR INVERSO: El multiplexor inverso se utiliza para la transmisión de un canal de datos de alta velocidad por dos o más redes WAN de velocidad más baja. Uno de los multiplexores inversos subdivide el canal de datos de alta velocidad entre todos los enlaces de velocidad más baja. Otra unidad reconstruye la señal original en el extremo remoto. El multiplexor inverso se sobrepone a las eventuales diferencias de retardo entre los distintos canales por medio de buffers internos. La norma BONDING define el multiplexado inverso a 64 KBps y tiene 3 distintos tipos de implementación.

Los multiplexores inversos pueden dividirse en dos tipos principales:
1. Multiplexores inversos de ancho de banda permanente, cuya aplicación primaria es la de brindar un tubo de datos WAN de alta velocidad cuando sólo hay disponibles enlaces WAN de velocidad inferior. Una aplicación típica sería brindar un acceso de alta velocidad a internet cuando solo hay líneas E1 o T1 disponibles.
2. Multiplexores inversos de ancho de banda conmutado, los cuales agregan o reducen ancho de banda según sea necesario. Las aplicaciones principales para dichos multiplexores inversos comprenden ancho de banda a demanda y transferencia automática en caso de fallas ("backup") de linea arrendada. Un ejemplo de ancho de banda a demanda sería el agregar enlaces ISDN BRI – además del ancho de banda básico arrendado en forma permanente – durante los intervalos de maxímo tráfico, a fin de mantener el nivel de desempeño y el tiempo de respuestas exigidos. Los enlaces ISDN se eliminan posteriormente, durante los intervalos de bajo tráfico.

Otra aplicación de los multiplexores inversos la constituye la transferencia automática de líneas digitales/arrendadas de alta velocidad. Muchas organizaciones se ven atrapadas entre la necesidad de mantener sus redes WAN funcionando el 100% del tiempo y el alto costo de adquirir un enlace WAN adicional con fines de transferencia automática ante falla. En este caso, un multiplexor inverso puede discar números enlaces ISDN BRI cuando se exige redundancia y así superar las limitaciones de velocidad de un único enlace, brindando una solución de bajo costo y elevadas prestaciones. Otra aplicacion es el de discar enlaces de alta velocidad tales como los requeridos para videoconferencias de alta calidad.

SWITCH O CONMUTADOR: Es un dispositivo de switcheo modular que proporciona conmutados de alta densidad para interfaces Ethernet y Fast Ethernet Proporciona la posibilidad de trabajar en redes LAN virtuales y la posibilidad de incorporar conmutación múltiple con el Sistema Operativo de Cisco Internetwork. El diseño modular permite dedicar conexiones Ethernet de 10Mbps y conexiones Fast Ethernet de 100Mbps a segmentos LAN, estaciones de alto rendimiento y servidores, usando par trenzado sin apantallamiento, par trenzado apantallado y fibra optica. Permiten una amplia velocidad de conmutación entre Ethernet y Fast Ethernet a través de una amplia gama de interfaces que incluyen Fast Ethernet, Interfaces de Distribución de Datos por Fibra (FDDI) y ATM.

Uno de estos equipos más utilizados es el LightStream 1010 de Cisco, es un conmutador ATM. Se trata del primero de una serie de nuevos conmutadores de esa empresa que representa la próxima generación de sistemas de conmutadores ATM para redes de grupos de trabajos y campus (LAN). El 1010 admite dos posibilidades para las conexiones, una con circuitos virtuales permanentes (PVC) en el cual las conexiones se crean manualmente y circuitos virtuales conmutados (SVC) en el cual las conexiones se hacen automáticamente.
Los conmutadores ocupan el mismo lugar en la red que los concentradores. A diferencia de los concentradores, los conmutadores examinan cada paquete y lo procesan en consecuencia en lugar de simplemente repetir la señal a todos los puertos. Los conmutadores trazan las direcciones Ethernet de los nodos que residen en cada segmento de la red y permiten sólo el tráfico necesario para atravesar el conmutador. Cuando un paquete es recibido por el conmutador, el conmutador examina las direcciones hardware (MAC) fuente y destino y las compara con una tabla de segmentos de la red y direcciones. Si los segmentos son iguales, el paquete se descarta ("se filtra"); si los segmentos son diferentes, entonces el paquete es "remitido" al segmento apropiado. Además, los conmutadores previenen la difusión de paquetes erróneos al no remitirlos.

Los factores que afectan la eficacia de una red son: la cantidad de tráfico, número de nodos, tamaño de los paquetes y el diámetro de la red, por lo que usar conmutadores presenta muchas ventajas, ya que aislan el tráfico y aislan la congestión, separan dominios de colisión reduciendolas, segmentan, reiniciando las normas de distancia y repetidores.

La congestión en una red conmutada, normalmente puede ser aliviada agregando más puertos conmutados, y aumentando la velocidad de estos puertos. Los segmentos que experimentan congestión son identificados por su utilización y la tasa de colisión, y la solución es una nueva segmentación o conexiones más rápidas. Tanto los puertos conmutados Fast Ethernet, como los Ethernet pueden ser añadidos por debajo de la estructura del árbol de la red para aumentar las prestaciones.

Bibligrafia:

Obtenido de:
http://www.angelfire.com/wi/ociosonet/14.html

ARQUITECTURA DE REDES

0 Comments »
ARQUITECTURA DE REDES

Concepto de Arquitectura

La arquitectura de red es el medio mas efectivo en cuanto a costos para desarrollar e implementar un conjunto coordinado de productos que se puedan interconectar. La arquitectura es el “plan” con el que se conectan los protocolos y otros programas de software. Estos es benéfico tanto para los usuarios de la red como para los proveedores de hardware y software.

Caracteristicas de la Arquitectura

• Separación de funciones. Dado que las redes separa los usuarios y los productos que se venden evolucionan con el tipo, debe haber una forma de hacer que las funciones mejoradas se adapten a la ultima . Mediante la arquitectura de red el sistema se diseña con alto grado de modularidad, de manera que los cambios se puedan hacer por pasos con un mínimo de perturbaciones.
• Amplia conectividad. El objetivo de la mayoría de las redes es proveer conexión optima entre cualquier cantidad de nodos, teniendo en consideración los niveles de seguridad que se puedan requerir.
• Recursos compartidos. Mediante las arquitecturas de red se pueden compartir recursos tales como impresoras y bases de datos, y con esto a su vez se consigue que la operación de la red sea mas eficiente y económica.
• Administración de la red. Dentro de la arquitectura se debe permitir que el usuario defina, opere, cambie, proteja y de mantenimiento a la de.
• Facilidad de uso. Mediante la arquitectura de red los diseñadores pueden centra su atención en las interfaces primarias de la red y por tanto hacerlas amigables para el usuario.
• Normalización. Con la arquitectura de red se alimenta a quienes desarrollan y venden software a utilizar hardware y software normalizados. Mientras mayor es la normalización, mayor es la colectividad y menor el costo.
• Administración de datos. En las arquitecturas de red se toma en cuenta la administración de los datos y la necesidad de interconectar los diferentes sistemas de administración de bases de datos.
• Interfaces. En las arquitecturas también se definen las interfaces como de persona a red, de persona y de programa a programa. De esta manera, la arquitectura combina los protocolos apropiados (los cuales se escriben como programas de computadora) y otros paquetes apropiados de software para producir una red funcional.
• Aplicaciones. En las arquitecturas de red se separan las funciones que se requieren para operar una red a partir de las aplicaciones comerciales de la organización. Se obtiene mas eficiencia cuando los programadores del negocio no necesitan considerar la operación.

Tipos de Arquitectura

Arquitectura SRA

Con la ASR se describe una estructua integral que provee todos los modos de comunicacion de datos y con base en la cual se pueden planear e implementar nuevas redes de comunicacion de datos. La ASR se construyo en torno a cuatro pricipios basicos: Primero, la ASR comprende las funciones distribuidas con base en las cuales muchas responsabilildades de la red se puede mover de la computadora central a otros componentes de la red como son los concentradores remotos. Segundo, la ASR define trayectorias ante los usuarios finales (programas, dispositivos u operadores) de la red de comunicaion de datos en forma separada de los usuarios mismos, lo cual permite hacer extensiones o modificaciones a la configuracion de la red sin afectar al usuario final. Tercero, en la ASR se utiliza el principi de la independencia de dispositivo, lo cual permite la comunicacion de un programa con un dispositivo de entrada / salida sin importar los requrimientos de cualquier dispositivo unico. Esto tambien permite añadir o modificar programas de aplicacion y equipo de comunicacion sin afectar a otros elementos de la red de comunicacion. Cuarto, en la ASR se utilizan funciones y protocolos logicos y fisicos normalizado para la comunicacion de informacion entre dos puntos cualesquiera, y esto siginifca que se puede tener una arquitectura de proposito general y terminales industriales de muchas variedades y un solo protocolo de red.

Arquitectura de Red Digital (DRA).- Esta es una arquitectura de red distribuida de la Digital Equipment Corporation. Se le llama DECnet y consta de cinco capas. Las capas fisica, de control de enlace de datos, de transporte y de servicios de la red corresponden casi exactamente a las cuatro capas inferiores del modelo OSI. La quinta capa, la de aplicación, es una mezcla de las capas de presentacion y aplicación del modelo OSI. La DECnet no cuenta con una capa de sesion separada.

Arcnet

La Red de computacion de recursos conectadas (ARCNET, Attached Resource Computing Network) es un sistema de red banda base, con paso de testigo (token) que ofrece topologias flexibles en estrella y bus a un precio bajo. Las velocidades de transmision son de 2.5 Mbits/seg.
ARCNET usa un protocolo de paso de testigo en una topologia de red en bus con testigo, pero ARCNET en si misma no es una norma IEEE. En 1977, Datapoint desarrollo ARCNET y autorizo a otras compañias. En 1981, Standard Microsystems Corporation (SMC) desarrollo el primer controlador LAN en un solo chip basado en el protocolo de paso de testigo de ARCNET. En 1986 se introdujo una nueva tecnologia de configuracion de chip.

Ethernet

• Desarrollado por la compañía XERTOX y adoptado por la DEC (Digital Equipment Corporation), y la Intel, Ethernet fue uno de los primero estándares de bajo nivel. Actualmente es el estándar mas ampliamente usado.
• Ethernet esta principalmente orientado para automatización de oficinas, procesamiento de datos distribuido, y acceso de terminal que requieran de una conexión económica a un medio de comunicación local transportando trafico a altas velocidades
• Este protocolo esta basado sobre una topología bus de cable coaxial, usando CSMA/CD para acceso al medio y transmisión en banda base a 10 MBPS. Además de cable coaxial soporta pares trenzados. También es posible usar Fibra Optica haciendo uso de los adaptadores correspondientes.
• Además de especificar el tipo de datos que pueden incluirse en un paquete y el tipo de cable que se puede usar para enviar esta información, el comité especifico también la máxima longitud de un solo cable (500 metros) y las normas en que podrían usarse repetidores para reforzar la señal en toda la red.

Modelo OSI

El modelo OSI surge como una búsqueda de solución al problema de incompatibilidad de las redes de los años 60. Fue desarrollado por la ISO (International Organization for Standardization) en 1977 y adoptado por UIT-T.
Consiste de una serie de niveles que contienen las normas funcionales que cada nodo debe seguir en la Red para el intercambio de información y la ínter- operabilidad de los sistemas independientemente de suplidores o sistemas. Cada nivel del OSI es un modulo independiente que provee un servicio para el nivel superior dentro de la Arquitectura o modelo.

Modelo SNA

El modelo SNA tiene las siguientes características:
• Permite compartir recursos
• Reconoce perdida de datos durante la transmisión, usa procedimientos de control de flujo, evade sobrecarga y la congestión, reconoce fallos y hace corrección de errores.
• Provee interfaces abiertas documentadas.
• Simplifica la determinación de problemas gracias a los servicios de administración de la red.
• Mantiene una arquitectura abierta.
• Provee facilidad de interconexión de redes
• Provee seguridad a través de rutinas de logon y facilidades de encryptamiento
• Usa Synchronous Data Link Control (SDLC)

Bibliografia

Obtenido de:
http://html.rincondelvago.com/arquitectura-de-redes.html

SERVICIOS BASICOS DE UN SISTEMA OPERATIVO

0 Comments »
Servicios del Sistema Operativo

Como ya se indicó, una de las dos funciones principales de un sistema operativo es servir de máquina ampliada o virtual, brindando facilidades a los programas de los usuarios y a estos.

Para lograr este objetivo, los sistemas operativos se encargan de programar el trabajo con los diferentes dispositivos existentes en el sistema de cómputo, separando a los usuarios y programas de esta tarea compleja y tediosa.

Los servicios a usuarios se brindan, básicamente, por medio de los llamados Programas del Sistema, mientras que a los programas se les brindan a través de las Llamadas al Sistema.

Los programas del sistema constituyen una colección más o menos grande de programas (no funciones o subrutinas) suministradas por el fabricante (u otra empresa) que permite realizar operaciones que son comunes a diferentes usuarios, brindando un ambiente más adecuado para el desarrollo y explotación de aplicaciones.

Los programas del sistema pueden ser divididos en varias categorías, aunque esto también depende de cada sistema operativo. Algunos posibles grupos serian : Manipulación de ficheros (crear, eliminar, renombrar, imprimir, etc.), obtención de información de estado (fecha, hora, memoria disponible, espacio en disco, etc.), editores de texto, etc.

En resumen, los programas del sistema son aquellos que ejecutan las acciones descritas en los comandos de éste o que aparecen en los menús en el caso de las interfaces gráficas.

Las llamadas al sistema constituyen la interface entre el sistema de operación y los procesos.
Estas generalmente se hacen por medio de instrucciones en lenguaje ensamblador, aunque en algunos casos existen facilidades que permiten se realicen desde lenguajes de alto nivel.

En el segundo caso antes indicado, se dan las variantes de que existan funciones o procedimientos predefinidos en biblioteca que realicen las llamadas al sistema como tal (UNIX, Windows) o el compilador genera directamente las instrucciones necesarias para esto.

Los mecanismos que ponen en ejecución las llamadas al sistema operativo difieren de uno a otro:

• En el OS/360 existe una instrucción especial (SVC) que provoca una trampa hacia el sistema.

El número de la llamada se da en la instrucción.

• En el CP/M no existe una instrucción especial y por ello el número de la llamada se pone en el registro C y se salta a la dirección 5 de la memoria.
• En MS-DOS se utiliza la instrucción INT seguida de un número de interrupción (21H).

En todos los casos antes indicados, se requiere de la transferencia de parámetros desde o hacía el procedimiento que instrumenta la llamada. Este pase de parámetros se ejecuta a través de los registros del procesador o por medio de un bloque o tabla de memoria (pasándose la dirección en un registro).

El número de llamadas, la forma y tipo de cada una y los posibles agrupamientos de estas dependen de cada sistema de operación en específico, aunque en forma general se pudieran catalogar en 4 grupos:

• Control de procesos.
Incluyen operaciones con los procesos tales como: Crear, eliminar, finalizar, abortar, ejecutar, enviar señal, esperar por señal, etc.
• Manipulación de ficheros.
Incluyen operaciones con los ficheros tales como: Crear, eliminar, abrir, cerrar, renombrar, leer, escribir, etc.
• Manipulación de dispositivos.
Incluyen operaciones con los dispositivos tales como: Solicitar, liberar, leer, escribir, etc.
• Intercambio de información.
Incluyen operaciones tales como: Conocer la fecha, conocer la hora, conocer atributos de ficheros, fijar atributos de ficheros, fijar la fecha, etc.
Además de los grupos antes indicados podría haber otros u otras operaciones dentro de estos. Otros conjuntos podrían ser:
• Manipulación de directorios y sistemas de ficheros.
• Protección.
• Señalización.

La mejor manera de entender la esencia de las llamadas al sistema consiste en hacer una revisión detallada de las que están presentes en uno o varios sistemas operativos y por ello se recomienda revisar las páginas de la 23 a la 36 del segundo libro de Tanenbaum, donde se presenta la explicación de las más importantes presentes en la versión 7 del UNIX.

Bibliografía
• Sistemas Operativos Modernos, Andrew S. Tanenbaum, pág. 13-27.
• Operating system Design and Implementation, Tanenbaum, pág. 14-42.
• Operating System Concepts, Peterson and Silberchatz, pág. 39-54
http://www.monografias.com/trabajos81/conceptos-fundamentales-servicios-sistema-operativo/conceptos-fundamentales-servicios-sistema-operativo.shtml

ADMINISTRACION DE MEMORIA

0 Comments »
Administrador De La Memoria

El Administrador De Memoria se refiere a los distintos métodos y operaciones que se encargan de obtener la máxima utilidad de la memoria, organizando los procesos y programas que se ejecutan de manera tal que se aproveche de la mejor manera posible el espacio disponible.

Para poder lograrlo, la operación principal que realiza es la de trasladar la información que deberá ser ejecutada por el procesador, a la memoria principal. Actualmente esta administración se conoce como Memoria Virtual ya que no es la memoria física del procesador sino una memoria virtual que la representa. Entre algunas ventajas, esta memoria permite que el sistema cuente con una memoria más extensa teniendo la misma memoria real, con lo que esta se puede utilizar de manera más eficiente. Y por supuesto, que los programas que son utilizados no ocupen lugar innecesario.

Las técnicas que existen para la carga de programas en la memoria son: partición fija, que es la división de la memoria libre en varias partes (de igual o distinto tamaño) y la partición dinámica, que son las particiones de la memoria en tamaños que pueden ser variables, según la cantidad de memoria que necesita cada proceso.

Entre las principales operaciones que desarrolla la administración de memoria se encuentran la reubicación, que consiste en trasladar procesos activos dentro y fuera e la memoria principal para maximizar la utilización del procesador; la protección, mecanismos que protegen los procesos que se ejecutan de interferencias de otros procesos; uso compartido de códigos y datos, con lo que el mecanismo de protección permite que ciertos procesos de un mismo programa que comparten una tarea tengan memoria en común.

ADMINISTRADOR DE LA MEMORIA

La administración de memoria se refiere a los distintos métodos y operaciones que se encargan de obtener la máxima utilidad de la memoria, organizando los procesos y programas que se ejecutan de manera tal que se aproveche de la mejor forma posible el espacio disponible.

Existen cuatro tipos de esquema s de asignación de memoria, estos esquemas de la administración de la memoria rara vez se utilizan en los sistemas operativos actuales.

Configuración de un solo usuario
Particiones fijas
Particiones dinámicas
Particiones dinámicas reubicables

Ya que estos eran utilizados en los primeros sistemas de computo. Pero es importante su estudio, ya que cada uno introdujo conceptos fundamentales que ayudaron a la evolución de la administración de la memoria.

ESQUEMA CONTIGUO DE USUARIO UNICO

El primer esquema de asignación de la memoria funcionaba de la siguiente manera:

Cada programa que se iba a procesar se cargaba completo en memoria y se le asignaba tanto espacio contiguo necesitara.

Si el programa era demasiado grande y no cabía en el espacio de memoria disponible, no se podía ejecutar. A pesar de que las primeras computadoras eran demasiado grandes tenían muy poca memoria.

Esto demuestra un factor limitante para todas las computadoras, tiene una cantidad finita de memoria y si un programa no cabe, hay que incrementar el tamaño de la memoria principal o modificar el programa.

PARTICIONES FIJAS

El primer intento para posibilitar la multiprogramación fue la creación de las particiones fijas o estáticas, en la memoria principal, una partición para cada tarea. El tamaño de la partición se especificaba al encender el sistema, cada partición podía reconfigurarse al volver encender el sistema o reiniciar el sistema.

Este esquema introdujo un factor esencial, la protección del espacio de memoria para la tarea. Una vez asignada una partición a una tarea, no se permitía que ninguna otra tarea entrara en sus fronteras.

Este esquema de partición es mas flexible que la de usuario único, por que permite que varios programas estén en memoria al mismo tiempo.

PARTICIONES DINÁMICAS

Con las particiones dinámicas, la memoria principal disponible aun se conserva en bloques contiguos, pero a las tareas nada mas se les da memoria que solicitan cuando se cargan para su procesamiento. Aunque es una mejoría significativa en relación con las particiones fijas, no se elimina el problema de las mismas.

Un esquema de particiones dinámicas utiliza toda la memoria al cargar las primeras tareas, pero conforme entran nuevas tareas en el sistema que no son del mismo tamaño de las que acaban de salir de la memoria se acomodan en los espacios disponibles de acuerdo con su prioridad.

PARTICIONES DINÁMICAS RE LOCALIZABLES

Con este esquema de asignación de memoria, el administrador de memoria relocaliza los programas para reunir los bloques vacios y compactarlos, para hacer un bloque de memoria lo bastante grande para aceptar algunas o todas las tareas en espera de entrar.

La compactación no es una tarea sencilla. Primero, todos los programas en memoria se deben relocalizar, de manera que queden contiguos; luego hay que ajustar cada dirección y cada referencia a una dirección en todo programa para tomar en consideración la nueva localización del programa en memoria.

ADMINISTRACIÓN DE LA MEMORIA SISTEMAS RECIENTES

ASIGNACIÓN DE LA MEMORIA EN PÁGINAS

Se basa en el concepto de dividir cada tarea de llegada en páginas de igual tamaño. Algunos sistemas operativos escogen el tamaño de la página igual al tamaño de bloque de memoria. Que es el tamaño de las secciones de disco en las cuales se almacena la tarea.

Las secciones de un disco se conocen como “sectores”. Y los sectores de la memoria principal se denominan marcos de página.

Antes de ejecutar un programa, el administrador de la memoria lo prepara mediante:

1.-la determinación del número de páginas del programa.
2.-la ubicación de suficientes marcos de pagina vacios en la memoria principal.
3.-la carga de todas las páginas del programa de los mismos.

PAGINACIÓN POR DEMANDA

La paginación por demanda introdujo la idea de cargar nada más una porción del programa en la memoria para su procesamiento. Fue el primer esquema ampliamente utilizado que elimino la necesidad de colocar toda la tarea en la memora desde el principio hasta el final.

Ejemplo: cuando los usuarios escogen la primera opción del menú de un programa de aplicación, los otros módulos que no se requieren en ese momento se pueden extraer de la memoria y cargar de nuevo cuando sean llamados. No requiere todas las páginas al mismo tiempo

1.- Los módulos de manejo de errores escritos por el usuario se procesan solo cuando se detectan un error específico durante la ejecución.
2.-Muchos módulos son mutuamente excluyentes.
3.- Ciertas opciones de programa son excluyentes entre si o no resultan siempre accesibles.

ASIGNACIÓN DE MEMORIA EN SEGMENTOS

El concepto de segmentación se basa en la práctica común entre los programadores de estructurar programas en módulos, agrupamientos lógicos de código. Con la asignación de memoria en segmentos, cada tarea se divide en varios segmentos de tamaños diferentes, uno por cada modulo que contiene piezas que ejecutan funciones relacionadas.

La tabla de tareas lista todas las tareas en proceso.
La tabla de mapa de segmentos lista detalles sobre cada segmento.
La tabla de mapa de memoria vigila la asignación de la memoria.
Es una combinación de segmentos y de paginación por demanda y ofrece los beneficios lógicos de la segmentación y las ventajas físicas de la paginación.

Bibliografia

Obtenido de:
http://www.mitecnologico.com/Main/AdministradorDeLaMemoria